In The Name of Allah
 Finite Element
 HW \# 1
 Due 1398.08.25

1. Find the Euler partial differential equation for each of the following functionals:
(a) $\int_{a}^{b} \sqrt{1+y^{\prime}} d x$
(b) $\int_{a}^{b} \cos \left(x y^{\prime}\right) d x$
2. Repeat Problem 1 for the following functionals:
(a) $\int_{a}^{b}\left(y^{\prime 2}+y^{2}\right) d x$
(b) $\int_{a}^{b}\left(5 y^{2}-y^{\prime \prime 2}+10 x\right) d x$
3. Show that a function that minimizes the functional

$$
I(\Phi)=\frac{1}{2} \int_{S}\left[|\nabla \Phi|^{2}-k^{2} \Phi^{2}+2 g \Phi\right] d S
$$

is the solution to the following differential equation,

$$
\nabla^{2} \Phi+k^{2} \Phi=g
$$

4. Obtain the variational principle for the differential equation

$$
-\frac{d^{2} y}{d x^{2}}+y=\sin \pi x, \quad 0<x<1
$$

Subject to $y(0)=0=y(1)$.

